In recent years, Geospatial Artificial Intelligence (GeoAI) has become the focus of a new wave of data-driven spatial analytics. These techniques have played an increasing role in understanding the ever-evolving social and environmental systems found in the real world, as well as the interaction between them, such as modeling the spread of infectious diseases, quantifying the melting rate of sea ice in the Arctic, and predicting presidential voting outcomes.

However, because of its data-driven and theory-free nature, GeoAI research possibly generates as much skepticism as enthusiasm. Recently numerous aspects of scientific practice have come under scrutiny, and concerns have been raised about the degree to which they reflect ethical ideals. Many of the questions raised in the early 1990s about GIS—equity in training and access, bias and oversimplification in representation, the potential for surveillance—can also be raised about GeoAI.

ABOUT THE WORKSHOP:
In recent years, Geospatial Artificial Intelligence (GeoAI) has become the focus of a new wave of data-driven spatial analytics. These techniques have played an increasing role in understanding the ever-evolving social and environmental systems found in the real world, as well as the interaction between them, such as modeling the spread of infectious diseases, quantifying the melting rate of sea ice in the Arctic, and predicting presidential voting outcomes.

However, because of its data-driven and theory-free nature, GeoAI research possibly generates as much skepticism as enthusiasm. Recently numerous aspects of scientific practice have come under scrutiny, and concerns have been raised about the degree to which they reflect ethical ideals. Many of the questions raised in the early 1990s about GIS—equity in training and access, bias and oversimplification in representation, the potential for surveillance—can also be raised about GeoAI.

TOPICS INCLUDE:
- GeoAI for surveillance
- Transparency in GeoAI
- Explainable GeoAI
- Reproducibility & replicability of GeoAI
- Propagation of data uncertainty through GeoAI
- Real-time GeoAI
- Next-generation GeoAI models
- What makes an AI application “GeoAI”?

SPEAKERS
- YU LIU, Peking University
- KRZYSZTOF JANOWICZ, University of California, Santa Barbara
- RENEE E. SIEBER, McGill University
- WENWEN LI, Arizona State University
- MICHAEL GOODCHILD, University of California, Santa Barbara
- STEWART FOTHERINGHAM, Arizona State University
- PETER KEDRON, Arizona State University
- MAY YUAN, University of Texas at Dallas